
OrIC FILE COPY(a 7
NASA Contractor Report 181985
ICASE Report No. 90-11

ICASE
A KINETIC EQUATION WITH KINETIC ENTROPY
FUNCTIONS FOR SCALAR CONSERVATION LAWS

Benoit Perthame
Eitan Tadmor

Contract No. NAS1-18605
January 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225 D TIC
Operated by the Universities Space Research Association ELECTE

OCT03 
M9903

EU
NA/SA ~ 9 DSRUTON STATEM~
National Aeronautics and Approved for public relea; - i
SPace Administration Distribution UnlItttd
Langley Reserch Center ,Hampton, Virginia 23665-5225 90 1 0 O 'C ' 0 2

I V V



A KINETIC EQUATION WITH ,
KINETIC ENTROPY FUNCTIONS .

FOR SCALAR CONSERVATION LAWS' 1 t t- -d

Benoit Perthame , By_______

1DVistrib,t± n/

Department de Math~matiquesde-- Avallbility Codes

Universit6 d'Orleans, BP 6749 1a nvil and/or

45067 Orlans CX2, FRANCE / Special

Eitan Tadmor I-f

School of Mathematical Sciences, Tel-Aviv University

Tel-Aviv 69978, ISRAEL

and

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

o - ABSTRACT

We construct a nonlinear kinetic equation and prove that it is well-adapted to describ

general multidimensional scalar conservation laws. In particular we prove that it js well-posec

uniformly in e - the microscopic scale. We also show that the proposed kineticsequation i,

equipped with a family of kinetic entropy functions - analogous to Boltzmann's x\icroscopic (

H-function, such that they recover Krushkov-type entropy inequality on the m croscopic ) *

scale. Finally, we prove by both - BV compactness arguments in the multidimens nal case

and by compensated compactness arguments in the one-dimensional case, that he 1

density of kinetic particles admits a 'continuum' limit, as it converges strongly with 1 0 to

the unique entropy solution of the corresponding conservation law.
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1. INTRODUCTION

Consider the scalar multi-dimensional conservation law

ad
(1.1) [U(X, t)]+ a [Ai(u(x,t))] = 0, (x,t),Rd x Rt, Aj(.)EC 1,

with given initial conditions u(X, t = 0) = u0(x). We are concerned here with a Boltzmann-

like kinetic equation which describes (1.1), as its microscopic scale, e > 0, tends to zero.

To this end we introduce a scalar function, f,(x, v, t), which can be viewed as a microscopic
description for the density of particles located at (X, t)eRd x R + with speed vER. Starting
with given initial distribution, f,(x, v, 0), our kinetic model evolves according to

1
(1.2a) [Ot + a(v) O]f.(x, v, t) = [X,.(,t)(V) - (X, V, t)].

Equation (1.2a) tells us that the particles are transported along

d a
a~v)-.=_Ea~v)5----1(

and that their collisions are governed by the nonlinear kernel on the right. Here,

(1.2b) u(x, t) = Z ff(X,Vt)dv,

denotes the local density of particles at a given (x, t) location, and the 'equilibrium function',

X,,(,,t)(v), is the signature of u,(x, t), i.e.,

sgnu, if (u - v)v > 0,
(1.2c) X(v) = ~ 0, if (u- v)v < 0

The classical example of a kinetic model is of course the Boltzmann :-juation [1]. Equation

(1.2) is closely related to the B.G.K. model of Boltzmann equation. Existence theory for
Boltzmann equation and its simplified B.G.K. model can be found in [6], [11], respectively.
In both cases, however, the question of convergence of the macroscopic moments to weak

solutions of compressible Euler equations is still an open problem. (Consult [3] regarding
an affirmative answer to this convergence question in the case of strong solutions.) In this

paper we restrict our attention to the simpler scalar case, and we show that the proposed

kinetic equation (1.2) is well adapted to describe strong as well as weak solutions of (1.1) as
,40.

The paper is organized as follows. In Section 2 we show that the kinetic equation (1.2) is
well-posed in L'O(R+; L1(Rd x R,)). Next, we borrow our terminology from the framework

of Boltzmann's kinetic equation. The microscopic scale, e, in (1.2) can be viewed as the



mean free path. In Section 3 we prove that the continuum or 'fluid' limit of the local density

of particles, lirn 0 u (x, t) is the unique entropy solution of (1.1). A kinetic construction of

conservative solutions was carried out by Giga and Miyakawa [7]. In fact their construction

is nothing but a fractional splitting solution of our kinetic equation (1.2), namely, a kinetic

approximation is constructed by a succession of small time steps, in which we first transport

and then project the particles distribution according to (1.2). Here we improve on [7] by

identifying the underlying kinetic equation which corresponds to (1.1). It is also shown here

that this kinetic equation is equipped with (a family of) kinetic entropy functions which play

an analogous role to Boltzmann's H-function. In particular, Krushkov entropy inequality

[8], [9] is recovered in the 'fluid' limit e 1 0.

In Section 4 we revisit the question of the 'fluid' limit in the case of one-dimensional

kinetic model. Here we show that the compensated compactness theory of Tartar [13] can

be adapted as an alternative approach for providing an affirmative answer to the question

of macroscopic convergence. The compensated compactness arguments allow us to pass

to the continuum limit with minimal L fn La" information about the distribution function,

f,, which may still oscillate around the 'equilibrium function' Xu. Finally, in Section 5, we

indicate the extension of our results to the inhomogeneous case, in the presence of a (possibly

stiff) source term.

2. THE KINETIC EQUATION IS WELL-POSED

Let us rewrite (1.2) in the form

aa 1 1(2.1) - + a(v). + f X.
ax

separating between its linear part on the left and its nonlinear kernel on the right. By

Duhammel's principle, (2.1) admits the following equivalent integral representation

(2.2) fM(x,v,t) = e-&f(x - ta(v), v,0) +-J e(" O/cx,,(x_(t_ .)a(,,)(v)dr.

The question of existence of a kinetic solution of (1.2) is now transformed into that of a fixed

point solution for the RHS of (2.2). Fixing T, T > 0, we seek such a fixed point solution

in L"0 ([0,T]; L'(R" x Ri,)). To this end, we let f. and g, be two different solutions of

(1.2a) with corresponding densities u,(x,t) = f,(xv,t)dv and w,(x,t) = f g8 (xv,t)dv.
By (2.2), their difference does not exceed

Ilfe(x, v, t) - g.(X,V, t)11L1(RxR,) < e- 1fMX) V, 0) - ge(x, V,

+I f (-t)1.IXU.( xr)(V) -Xw,.z,-)(V)II1(1tXR)dr-.
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Using the properties of the signature function, X, we therefore conclude

If(X,v, t) - g(x,v, t)IIL(j4,XR) < e-t/Elf.(x, v,O) - ge(X,V,0)IIL1(RdxR,)+
(2.3) +(1 - e - /e) m ax f, , x, v, -) - g -(x, V, 'r)IIL(R.x R.).

-O<'r<t

The inequality (2.3) shows that the fixed point iterations

(2.4) f,7'+'(x,v,t) = e_,/ef,(x - ta(v),v,,o) + e e .((V)(dr,E =oe( - ) < ( - ' ' ° ) ' ( ~

are contracted (with a contraction factor of 1 - e- t/t) to a fixed-solution solution of (2.2).

Moreover, by (2.3) this kinetic solution is unique and continuously dependent on the initial-

data, for

(2.5) max IIfe(x, v, t) - ge(x, v, t)IL,(R.xR.) < IIf.(x, v, 0) - g.(X, V, 0 )llL,(RxR,).
0<t<T

We summarize this by stating

THEOREM 2.1. The kinetic model (1.2) is well-posed in LOO(R+; L'(R d x Rv)). Moreover,

its solution operator is nonexpansive in this topology, i.e., (2.5) holds.

We close this section with several remarks.

1. Lw-bound. To see that the solution operator associated with the kinetic model (1.2) is

uniformly bounded, we use (2.2), obtaining

I1f-(',v,t)lL-O(Rd.) < e- tllefE(',v, O)llL-(R.1)+

(2.6) + e- / ' ) max p ax,,,(.,,)(v)lL:!: <O<r<t

< e-tle!lf-(.,V,O)llL.-(R,_) + 1 - e- t1 ..

2. Finite speed of propagation. We assume that initially, f,(x, ., 0) has a rnpact support in

R,. Let us first show that f,(x,-, t) remains compactly supported. Indeed, by (2.6), f,(., v, t)

and hence u,(., t) are uniformly bounded, and therefore the contributions of X (.,.)(v) on the

RHS of (2.2) are supported by vE[-uO, , u.0], where uo = Ilu,(x, f)lL-.(x×+). Consequently,

MX( ., t) given in (2.2) remains compactly supported for all t > 0, with support contained

in suppf.(x, ., 0) U[-uo, uo]. (Note that after an initial kinetic layer of order 0(e), the

contribution of the initial data in (2.2) decays exponentially fast. Thereafter, f,(x,., t) is in

fact 'essentially' supported in [-uo, u.]).
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With this in mind we now turn to prove the finite spatial specd of propagation. We shall

need a refined version of estimate (2.6). To this end we first observe that according to (2.2)

- which we rewrite as

fMX, v,t) = e-t'f(x - ta(v), v, 0) -1- (1 - e /e) [fl=o e(Tt)/Xue(x
-(t.T)av),)(v)d]

f(x,v, t) is given by a convex combination of f,(x - ta(v), v, 0) and Xu,(x-(t,)a(v,)(v). By

Jensen's inequality, thezrefore, we have for any convex function, U(f),
I t

(2.7) U(f,(x, v, t)) < tlU(fe(x - ta(v), v, 0)) + -J e(t)lU(xu,((t_.)(,),-)(v))dr.

In particular, consider the case U(f) = If IP. If we let a, denote the maximal speed of

propagation,

(2.8) a, = {max la,(v)l , v suppj(x, .,t),

and B[r] = [-r,r]d C RX, is the ball of radius r, then (2.7) impliesP~,. , e-t1,:Ife(', V, )IL Brta )
lie()VtIIL-(Bf,-I) < e+

+ -j , e it)l Xu,(.,T)(v)llLo(B[r+(t,_r)al)dr.
S=0

Integrating the last inequality w.r.t. v we find
L Ili'(" '~l! '(sMP a - ". - im.Il,'vo

li , , t)IIo(B[-.]) dv < et j f( )II L(B[r+ta-) d v+

(2.9)

+ (1 - e- t/e) max Ife( ,V,T)IIL-(Btr+(t--r)aoo)dv-
O<,r<tI

If, on the one hand, we take the p-root of both sides and let p T o, we obtain

(2.10) IIf1(x,V,t)IILO(BrIxR,] ) < max{IlIfe(x,v,O)IILo(Blr+ta ]xn), 1},

in agreement with what we had before, consult (2.6). If on the other hand, we set p = 1 in

(2.9), we find that the function F(7),

F(T) IIfm, v, 7')IIL:-(Bfr+(t_,)a.)dv, 0 < 7- < t,

satisfies

F(t) < e-'IF(O) + (1 - e-t/) max F(-'),-- O<,r<t

and hence F(t) < F(O). Thus, we have a finite speed of propagation (< a,,) of the uniform

bound on the moments

(2.11) j Ilf(X, v, t)liL-(B[,B)dv < I IIfe(X, V, 0)IlL-(BT+ta-]1dv.
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In particular, the local density is uniformly bounded by the initial data,

(2.12) !IU,(X1t)1L< (RX, R+) <f If (X,,V, 0)!lL-o(RI)dv.

In summary, we conclude that for initial data fe(x, v, O)eL'(R,; L-(Rd)) which are compactly

supported in R,, the corresponding kinetic solution f,(x, v, t) remains compactly supported

in R, and is uniformly bounded in L'(R,; LcO(R d)), due to a finite speed of propagation

< a., given by

a,, {maxla,(v)l I I _II5 f (X,V,0)11L(Ro;L-<(Rd)) , V c suppvf(x, V,O)}

3. Monotonicity. The signature function X,,(v) is an increasing function of u. Consequently,

the fixed-point iterations (2.4) show that

(2.13) f(x, v, 0) > g,(x, v, 0) = fe(x, v, t) > g,(x, v, t), for all (x, v),

namely, the solution operator associated with the kinetic equation (1.2) is monotone. In

particular, if we compare a given kinetic solution (compactly supported in Rd x R..) with

the steady state solutions XC~ant.(v)" '.,if initially we have

(2.14a) Xk(v) < fe(x,v,0) or f,(x,v,0) XK(V),

we obtain

(2.14b) Xk(V) < fe(x,v,t) or f,(x,v,t) 5 XK(V),

in agreement with (2.6). And, since the kinetic solution operator is also conservative, the

Crandall-Tartar lemma [51 implies the Ll-contraction stated in (2.5). In fact, at this point

we can state a little more, namely,

4. L'-contraction revisited. Taking into account the finite-speed of propagation, we can

repeat - along the lines of Remark 2, a localized version of estimate (2.3) which sharpens

the Ll-contraction estimate (2.5) into

(2.15) I((XV, t) - go(x, v, t)llL,(BIrlx. < Ilf'(x, V,0) - ge(X, V, 0)IIL'(Br+tacl,xR,)-

5. The! various estimates quoted above indicate that after an initial layer of order O(C), the

kinetic solution asymptotes to the 'equilibrium function', x,4,,(v), where - as will be shown

in the next section, u(x, t) is the unique entropy solution of (1.1).
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3. KINETIC ENTROPY FUNCTIONS

Our analysis of the kinetic model (1.2) hinges on the construction of certain kinetic
entropy functions. A kinetic entropy function in this context is a function, H(f), such that

as in Boltzmann's H-Theorem, any solution of (1.2) obeys the additional entropy inequality

1ra t + a(v) . a.]H(f.)dv < 0.

We shall construct a family of such kinetic entropy functions depending on extra fixed

parameter k, k real. To this end, we integrate (1.2a) against sgn(f6 - Xk) over the phase

space. Invoking a standard regularization argument of the signum function we obtain

(3.2) j[at + a(v) .1lf. - xldv -j sgn(f. - Xk)(f, - X,,) dv.

Noting that the expression on the right is upper-bounded by

kjsgn(f. - Xk)(fc - X.,)dv _1jflf, - XkI + sgn(f. - Xk)(Xk - Xu.)]dv <

< [I if. - Xkldv - ju. - kfl,

we arrive at

THEOREM 3.1. For any solution f eL-(R+t; L'(R x R,,)) of the kinetic model (1.2), the

following inequality holds

(3.3) I[A + a(v) . - xkIdv < -![ Ife - xkldv - ju. - kl].

Now, the RHS of (3.3) is clearly nonpositive for

(3.4) -~Ifi - XYkIdV < 1f 6 -Xk)dvI =-ju. - kI.

Consequently, Theorem 3.1 yields

COROLLARY 3.2. For any k, k real, the following functions

(3.5) H(f ) =_ Hk(f.) = Ife - Xkl

are kinetic entropy functions, i.e., we have

(3.6) [O, + a(v) . ]lff - Xldv < 0.

6



Let us point out that our kinetic entropy functions, Hk(f,), are intimately related to the

entropy functions used by Krushkov in [8]. Indeed, as e 1 0 we expect (and later on prove)

that f, approaches Xu. With this in mind, the inequality (3.6) turns into Krushkov's entropy

inequality [8]

a d
(3.7) 0Iu- kI + -[sgn(u- k)(Ai(u)- Ai(k))] < 0, for any real k.

/1Ox1 -

To make this last point more precise, we shall need several lemmata. We start with

LEMMA 3.3. Let fCFL'(R+; L'(R,; L-(Ra))) be the solution of the kinetic equation (1.2),

subject to given initial data f,(x,v,0) which are compactly supported in R,,. Assume that

u,(x,t) = f f,(x,v,t)dv satisfies

(3.8) u,(x,0) -+ uo(x) in L'(Rd),

and

(3.9) a subsequence of u,(x, t) -- u(x, t) in L' (Rt; L'(Rd)).

Then the sequence u,(x, t) converges strongly in Loo "(R; L'(Rd)) to u(x, t), which is the

unique entropy solution of the conservation law (1.1), i.e., (3.7) holds.

Note: If we take k > IUIILoo(Rx[o,T]), then the entropy inequality (3.7) yields

d aU + E A(u) >0,
a~t i=i Oxi

i.e., u(x, t) is a supersolution of (1.1); similarly, taking k < -IIUIIL-(Rx[0,T1) shows that

u(x, t) is a subsolution of (1.1). Hence, (3.7) implies that u(x, t) solves the conservation law

(1.1).

To prove Lemma 3.3 we first prepare

LEMMA 3.4. Let fceL-(R+; L'(R; L(R d))) be the solution of the kinetic equation (1.2),

subject to given initial data fe(x, v, 0) which are compactly supported in R,. Then for any

k, k real, we have

(3.10) If. - XkIdv - Ju. - kI - 0 in L' (R + x Rd)

(3.11) ja(v)If. - Xkdv - sgn(uc - k)ja(v)(f, - x)dv o 0 in L'(R+ x Rd).

7



PROOF. The vanishing limit in (3.10) follows from the inequality (3 3), for

(3.12)

0O< 1oT [1 If - Xkldv - lu, - kl]dxdt < -e Tj[Ot + a(v)O]if. - Xkja-dzdt- 0.

To prove (3.11) we write

If.XkdVduvk

(3.13) jsgn(f, - Xk)(fe - Xk)dv -sgn(u, - k) j(f. - Xk)dv j~e-Xk)s(v)dv.
Here, s(v) s(v; x, t) is the characteristic function given by

s(v) = sgn(fC(x, v, t) - Xk(V)) - sgn(u,(x, t) - k).

Now, since s(v) is supported on the set

V = {vlsgn(f. - Xk) # sgn(u. - k)},

and since

sgn(f, - Xk)" s(v) 2, for vcV,

we can rewrite (3.13) in the following form,

(3.14) j If - xkldv - ju. - kj = I If. - Xklsgn(f. - Xk)s(v)dv -2 f Xkldv.

In view of (3.10), the identity (3.14) implies

(3.15) f Ie - xkldv- 0 in L' (R+ × Rx).
"v'V CIO Cx

We conclude by noting that

ja(v)ISf - xkldv - sgn(ue - k)fa(v)(fe - Xk)dv

(3.16) ja(v)(f. - xk)S(v)dv =2 a(v)f - XkIdV < 2a.jV I) - xIdv,

and (3.11) follows from (3.16) together with (3.15). 0

Equipped with Lemma 3.4 we turn to the

PROOF (of Lemma 3.3). By our assumption (3.8), there is a strongly convergent subse-

quence (still denoted by) u , (x, t) --4u(x, t). Utilizing (3.10) we obtain

(3.17) fIf. - xkldv = ju.- kl = ju- kl.

8



Here the overbar denotes the weak *L°-limit of the indicated quantities after extraction of

appropriate subsequences, if necessary. (We note that the existence of the weak *L' limits

here and below are justified, since in view of (2.11), f,(x, v, t) remains compactly supported

in R, and uniformly bounded w.r.t. e in L'(R,; L-( Rd))).

By (1.2) we have

- Xu. -[O + a(v) . 0 in D',CIO

and hence by (3.9)

(3.18) jai(v)fedv = ai(v)Xudv Ai(u,)= Ai(u).

This together with (3.11) gives

jai(v))lf - xkldv = sgn(u, - k)I ai(v)(f, - xk)dv

(3.19) = sgn(u - k). (j ai(v)fedv - j ai(v)Xdv)

= sgn(u - k)(Ai(u) - A,(k)).

Hence, in view of (3.17) and (3.19), the weak limit of (3.6) recovers the entropy inequality

(3.20)-lu - kJ + -[sgn(u - k)(Ai(u) - Ai(k))] _ 0.

The above argument shows that the strong limit of any subsequence of u, satisfies the

entropy inequality (3.20). Since the entropy solution of (1.1) subject to initial conditions

(3.8) is unique, we conclude that limeCo u,(x, t)= u(x, t) as asserted. 11

We now turn to show that the continuum 'fluid' limit of the kinetic equation (1.2) exists

and is governed by the conservation law (1.1). By Lemma 3.3 it remains to show that

ue(x, t) is precompact in L'o(Rt; L (Rd)). In this context there is (by now) a standard

procedure, e.g., [4], which is based on uniform Bounded Variation (BV) estimate for each

fixed t, coupled with equicontinuity (typically, Lipschitz continuity), in time. This brings us

to our next lemma which states

LEMMA 3.5. Assume that

iife(XV,0)llBV(RdxL1(,)) =m sup 1 JIfe(0 ± AX v + f,(x,v,O)Idvdx]

is bounded uniformly in e. Then the corresponding kinetic solution, fe(x, v, t), satisfies

(3.21) IfL(x,v, t)IIBV(RdL1(R,)) < Il f(X, V, O)lBv(RnxL'(R )).

9



Moreover, if f,(x, v, O)eL'(R ; BV(Rd)) are compactly supported in Rv, then we also have

for ti, t= - O,
(3.22) lu,(x, t 2 ) - V,(x, ti)llL'(Rg) it2 - t ' " a lf.(x,v,o)lBv(R dL1(R)).

PROOF. Since the kinetic model (1.2) is translation invariant in spatial variables, we can

apply the L'-contraction (2.5) to f,(x,v,t) with g. - fe(x 4 Ax, v,t) and obtain (3.21).

Integration of the kinetic equation (1.2) over the phase space yields

U (X, t)+ a(v)f(X, v, t)dv 0,

and since f (x, v, 0)cL'(R,; BV(Rd)) C L'(R,,; L(Rd)) is compactly suppofted in R,, we

may use the finite speed of propagation bound in Section 2 to conclude

II u,(X, t2) - u'(x, tl)IL1CRd = 11i Ez- JatV) fe (X, V, 7T)11Li (R.1)dT

< a12 lfe(X, V,7-)11B V(Rdx ,L (R&)) dT.

Also, since f,(x, v, 0)cL'(R,-• BV(Rc)) C BV(R" x L'(R,)), the last inequality together with

(3.21) imply the Lipschitz continuity in time, (3.22), which completes the proof. C]

Remark. In the course of proving Lemma 3.3, consult (3.18), we established only the weak

*L00 convergence of the spatial fluxes. However, equipped with the BV setup of Lemma 3.5

we are able to derive strong convergence. Indeed, one may utilize the integral representation

(2.2) to conclude that in this case we have

fe(XV,t) -4 X,,(,t)(v) strongly in L'([0,T] x R' x R,).

This together with the finite speed of propagation imply

If f a,(v)f6 (x, v, t) - A,(u(x, t))1LIC[0,1xRd.) <

< a,. IIf, (V)t) - XV,,( V)IL ([OT],RdxR.,) O0,

CJO

in contrast to the weak convergence stated in (3.18). We shall omit the details (consult

Theorem 3.7 below), and we turn now to summarize our results by stating . following.

THEOREM 3.6. Suppose f,(x, v, O)EL'(R,; L, n L0(Rd)) such that

(3.23) u,(x,0) ffe(x, v,0)dv -- uo(x) in L'(R).

10



Then the local density of the corresponding kinetic solution, u - f,, f,(x, v, t)dv, converges

to the unique entropy solution of (1.1), i.e., we have

(3.24) j f(x, v, t)dv --+ u(x, t) in L([O, T]; L'(Rd)),

and the entropy inequality (3.7) holds.

PROOF. We begin by first assuming that f,(x,v,O) is compactly supported in L'(Rv;
BV(R')), uniformly w.r.t. e. By Theorem 2.1 (consult (2.12)), u(x,t) are uniformly

bounded, and by (3.21) +hey have uniformly bounded spatial variation, i.e.,

II u-(X, 0t11 BV(RI-) - I I MX, V, t) II BV(Rd x Ll (R>><- Cons t.

Hence {u,(x, t), 0 < t < T} is a bounded set in L1 nBV(R ) and by Helly's theorem it

is therefore precompact in L(Rd). By (3.22), Ilu,(x,t)IL(Rd) is Lipschitz continuous in

time, and by Cantor diagonalization process of passing to further subsequence if necessary,

(3.24) follows. By Lemma 3.3 this completes the convergence proof for compactly supported

BV initial data. The general case is justified by standard cutoff and BV-regularization of

arbitrary Li fl L°(R d ) initial data, consult [4]. El

We continue with a couple of remarks.

1. The kinetic initial layer. We observe that Lemma 3.5 supplies us with an e-uniform bound

on the spatial variation on the microscopic scale, (3.21). The temporal variation (Lipschitz

continuity), however, is uniformly bounded only on the macroscopic scale, (3.22). In general,

one cannot control the temporal variation in the microscopic scale (uniformly in e), unless

we can prevent the possibility of a kinetic initial layer in (1.2). To this end we proceed by

2. Preparing the kinetic initial data. In order to avoid a kinetic initial layer, we have to

bound o f, uniformly in e and time, in particular at t = 0. Taking into account the uni-

form bound (in e and t) of the spatial variation, (3.21), it remains to bound the nonlinear

'interaction' kernel on the right of (1.2), !-(X,,, - fe). In particular, we therefore need

(3.25) IfL(X ,V,0) - X,,(.,)(V)L,(RdxR,,. )  0.

Since by our assumption (3.23) we already have that

IIxu(x,o)(v) - X,()(V)IILIRxR.>--)-- I1Uc(X) - Uo(X)llL'(R - 0,
CIO

the requirement (3.25) boils down to

(3.26) IIf(x, v, 0) - Xu.o()(v)IiL(MxRo) o "

11



Thus, given the initial conditions u(x, t = 0) = uo(x), we have to prepare the kinetic initial

data, fe(x,v,O), such that (3.26) holds. If we prepare the kinetic initial data in such a

manner, then we can derive explicit bounds (uniform in time) on the error between the

kinetic solution and the exact entropy solution, as told by

THEOREM 3.7. (Error bound). We consider kinetic inital data, f.(x, v, 0)EL'(R,; BV(Rd))

which are compactly supported in R,. Suppose we prepare the kinetic initial data so that

(3.27) IIfe(X,V,O) - X Mo(I)( v)I Ll( xR) o 0.
CIO

Then the following error bound holds

IIf.(x,v, t) - X..(-,t)(V)IIL(RIxR.) <

(3.28) < 2 eaIlf,(x,v,O)IIL(R,;Bv(Rd)) + 211f.(x,v,0) - XUC()(v)IIL(dx×R.) 0.
0

Consequently, we have

(3.29) fM(X,v,t) --+ X,4,,t)(v) strongly in L'(R+;L'(R d x R,)).

Note. Preparing the kinetic initial data according to (3.27) is a strengthened version of our

assumption (3.23). In this case, the kinetic distribution converges strongly and uniformly

in time, to the equilibrium state Xu, as expected. Also, all the weak limits indicated in

the proofs of Lemma 3.3 and 3.4 are in fact strong ones; in particular we now have strong

convergence of the corresponding fluxes

Vj ai(v)fdv ---+ Aj(u) in L-(R+; L'(Rd x R,)),

compared with (3.18).

PROOF. Since the kinetic model (1.2) is translation invariant in time, we can apply the

L-contraction (2.5) to f,(x, v, t) with g. = fj(x, v, t + At) and obtain

(3.30) II f-(v) I1af,(X)vt--0)IIV(R'×R,).

The kinetic equation (1.2a) enables us to upper bound the RHS of (3.30), namely,

a11jtM 'V = 0)I11LV Rd.x R.) <
(3.31)

< II[a(v) o,. f.(x, v,t = O)]LI(RgxR.) + - f(X, v, t = )L'(RXR )

12



The first term on the right of (3.31) does not exceed

11[a(v) -i. f](x, v,t = 0)[L(R1 ×R) < a. llf(x , V,O)l1nV(R;BV(R));

the second term is less than

11 X.. (.,t=0)(V) - f V(X, V, t = 0)IL(RdI R,) _< 2 fe(X, V, 0) - Xo(V)llLi(R.xR,).

Substituting the last two estimates into (3.31) we end up with

a
ell af(x, v, t)llLtcRd xR) _

atX

(3.32) < ca,,. f. (X 7VO) 11 L (&;BV(1q4)) + 2 11 f(x, v, 0) - XU.(x)(MVI ILV(R 1,&).-

Finally, we use the kinetic equation (1.2a) once more, obtaining

Ilf(X, v, t) - Xu.(x,(v)IIL (RR) <

(3.33) < eNaf(Xv, t)IlL'(R.'xR.) + elj[a(v)- a]f(X, v, t)llL_(Rdx.)

_< 2Ea, Ilf,(x, v, O)IIL'(R.;BV(4)) + 211fe(X, v, 0) - Xuo(z)(V)llL1(R€xR.),

and (3.28) follows.

By Theorem 3.6 we also have that u, - u and consequently that Xu. - XU converges

strongly and uniformly in time to zero, and by adding this to (3.28) we obtain (3.29) as

asserted. El

We note in passing that the L'-contraction and the related BV estimates stated in Section

2 and Lemma 3.5 are not identical with the usual Ll-contraction statements concerning

viscosity regularizations of entropy solutions of (1.1). In fact, at any fixed time level, we
~have

Iaellf- - 9ell'(RjR.) > j I j(f. - g.)dvl = Ilue - W. IlL (R).

By (3.29), however, the two statements coincide in the limit as e 1 0,

plIAf - 9-1 (RR. L X. - Xldvdx = Hlu - Wll1cP4),

and we recover the L'-contraction (and the corresponding BV estimates) for entropy solutions

of the conservation law (1.1).

We close this section by calling attention to a rather unusual result in the theory kinetic

equations. Namely, if u(x, t) is a smooth solution of the conservation law (1.1), then the

13



equilibrium function X,(.,t)(v) is an L'-solution of the corresponding kinetic equation (1.2).

That is

THEOREM 3.8 (exact solutions). If u(x, t)C nL'([O, T] x Rd) satisfies the conservation

law (1.1), then Xu(x,t)(v) is a kinetic solution (1.2) on R x [0, T].

Note. Theorem 3.8 is no longer valid when u(x, t) contains shock discontinuities. After the
formation of shock waves, the corresponding kinetic solution has a "multivalued" form, e.g.,

Xu(X,t)(V) + X[U2 (X,t), 1(X,t)](V ), as in the transport collapse method of Brenier (2].

PROOF. We have to show that f,(x, v, t) = X,(,)(v) satisfies the kinetic equation (1.2a),

i.e., that for any Co' test function ¢(x, v, t)

(3.34) j0 I.RxR. xu(,t)(v)[0j + a(v) . oa.€j(x, v, t)dxdvdt = 0.

Since the integration in R, is compactly supported (on [-u,, u,]), it is enough to consider
successively 4(x, v, t) = 4(x, t). {1, v, v 2 ,...}, in which case (3.34) amounts to the equivalent

conservation laws

(3.35) a [Up(X'Q] + a [f" vP-'ai(v)dv = 0, p = 1,2,... in D'.

Indeed, (3.35) are the usual entropy equalities satisfied by continuous solutions of (1.1),

but violating (for p > 1) the Rankine-Hugoniot conditions after the formation of shock

discontinuities.

4. MICROSCOPIC OSCILLATIONS AND COMPENSATED COMPACTNESS

In this section we deal with the one-dimensional scalar conservation law

(4.1) Ou OA(u)
(. Oa +

The corresponding underlying kinetic equation reads

a9 a1
(4.2) [ j + a(v) .]fg(x,v,t) = C [Xu.(.,t)(v)- f.(x,v,t)], a(.)-A'(.),

and we raise the question of convergence of the local 'particles density', u,(X, t) = 4 f(x, v, t)

dv, towards the entropy solution, u(x, t), of (4.1). In this section we give an affirmative answer

to this question, which is independent of compactness arguments, i.e., the BV estimates used

in Lemma 3.4. Instead, we appeal to compensated compactness arguments, specifically, we

employ Tartar's div-curl lemma [13]. In this context, it is instructive to see how oscillations
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which persist on the microscopic scale are 'compensated' in a manner which enables us to

pass to the limit on the macroscopic scale. We have

THEOREM 4.1. Let fecL'(R; L'(Rv; L, fLO(R))) be the solution of the kinetic equa-

tion (4.2). Then u,(x, t) =f ff(x, v, t)dv converges strongly in L' (R, x R'), p < oo, to the

unique entropy solution of the nonlinear conservation law (4.1).

Remark. The conservation law (4.1) is nonlinear in the sense that there exists no interval

on which the flux A(u) is linear, i.e., A'(u) V Const.

PROOF. Integration of (4.2) over the phase space yields

(4.3a) atu, + a. L a(v)f~dv = 0.

The corresponding entropy inequality reads

(4.3b) Ot I If, - xkIdv + O. I a(v)lfe - xkIdv < 0.

Since by (2.11) the left-hand side of (4.3b) lies in W- 1', Murat's lemma [10],[13] implies

that the negative measure on the right of (4.3b) lies in a compact set of H-1(R. x R+). Hence

we can apply the div-curl lemma [13] to the left-hand sides of (4.3a) and (4.3b), which gives

U if. - xkldv - j a(v)f,,dv f f - xkldv=

(4.4)

= . ja(v)f - xldv - I a(v)f dv" f. - xkIldv.

We recall that the overbar denotes the weak *L'-limit of the indicated quantities after

extraction of appropriate subsequences, if necessary. Following [12], we can rewrite (4.4) in

the equivalent form

(4.5) (U -i ja(v)If, - Xkldv jIf. - Xkjdv (Ija(v)fedv -ja(v)f~dv).

Using (3.10) and (3.11), the last equality is further simplified into

(4.6) (u, - U.). sgn(u, - k) a(v)(f, - x,)dv = ju. - kI• (I a(v)f dv - I a(v)f dv).

We now examine (4.6) at an arbitrary fixed location (x, t); with k = ,(x, t) we find after

little rearrangement

(4.7) UC - U1" (I a(v)xkdv - fa(v)f dv) 0.
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Of course, by (4.2)

fe - X.. = -,[at + a(v)z]fe - 0 1n D',

hence

(4.8) ja(v)f, dv a (v)X..d = A(u,);

Also, we recall with k i-,(x, t) we have

(4.9) fa(v)Xkdv = a(o).

Inserting (4.8) and (4.9) into (4.7) we find

lu, - le" (A(Ti,) - A(ue)) = 0.

This implies that

(4.10) A(u-) = A(e),

for otherwise, Iu, - :fe(x, t) = 0, which in turn leads again to (4.10). Taking the weak limit

of (4.2), we obtain with the help of (4.8) and (4.10),

9 a;ff ; + TA(:U,) = 0.

Thus, (a subsequence of) u,(x, t) converges to a weak solution of the conservat r law (4.1).

Moreover, in view of the nonlinearity of A(u), equality (4.10) implies that ue(:rt) converge

strongly in L'o (RX x R+), 1 < p < oo, consult Tartar (13]. Using this fact together with

Lemma 3.3 we conclude that u, converges strongly in L' (R. x R + ), p < oo, to the unique

entropy solution of (4.1), as asserted. E]

5. CONSERVATION LAWS WITH A SOURCE TERM

In this section we extend the above results to inhomogeneous scalar conservation laws

ad
(5.1) -[u(x,t)] + - [Ai(u(x, t))] = S(x, t, u), (x, t)ERd x R+

i~1

where S(x, t,.) is an LO'(R d x R+; C1) source term satisfying S(x, t, 0) 0.

The corresponding kinetic model equation reads

1
(5.2) [,9 + a(v) . aIf.(x, v, t) [X.(.,,)(V) - f(x, v, t)] + S'(x, t,v)f(X, v,t),

and is augmented with the constitutive relations (1.2b), (1.2c).
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A unique kinetic solution for (5.2) can be constructed, as before, by Banach fixed point

it( rations which yield

THEOREM 5.1. The kinetic model (5.2), (1.2b-c) is well-posed in L(R+; L'(R d x R,)).

Moreover, if f, and g, are two different inhomogeneous kinetic solutions of (5.1), and if we

let S' (t) denote

(5.3) S,(t) {rmax S'(x, t, v) I v E suppvfe(x, v, t) U suppvg,(x, v,t

then we have(5.4) max Il,(X, V,t)-a.(X, v,t)IIL'(R xR. ) :5 efT:0s'(d-I , v, )-e( 9 V,0)l1L1(Rd xR ).
< t< T -

We shall only indicate the proof of the L-(R+; L'(R d x R,) stability stated in (5.4). The

difference between the kinetic solutions f g - . (with corresponding local densities, U,(X, t)

flfC(x,v,t)dv and w,(x,t) fg,(x,v,t)dv) satisfies1v

[9t + a(v) .O](fC - g,) 1 (x-U.(-,t)(v) - Xw.(,t)(v)) - (fU - g.)] + S'(x, t, v)(f - g9).

Multiplying this by sgn(fC - g,) and integrating over R,, and R d (in this order), we obtain

dIfe(X,v,t) - ge(X,V,t)IIL1(R.xR.) < S(t). [Ife(Xv,t) - ge(XV, t)IIL(RfxR.),

and (5.4) follows. El

We conclude with several remarks concerning the entropy inequality.

The corresponding inhomogeneous kinetic entropy inequality now reads

(5.5) J[, + a(v) .8 ]ILf- xldv I S'(X, t, v)f. - Xkldv.

Moreover, by arguing along the lines of the stability estimate (5.4) we find that for BV(R.)

source terms we have

IlfMx, v, T)IIBv(RdXLI(R,)) < ef T S(t)dtjlfe(X, V, O)IIBv(R. XLCR.))+

(5.6)+I 
T ef S.5. -T ef2=tS'(,)d, max lIS'(x't,v)IIBv(Rd)dt " If(X,v,0)iiL,(R1.1R ).

This allows us to keep the convergence statement of Theorem 3.6,

f.(X, v, t)dv -- u(x, t), in L'([O, T], L'(R)),
CIO

in the inhomogeneous case (5.2). In view of (5.5), we are also able to recover the macroscopic
'continuum limit' entropy inequality for the above limit u = u(X, t), which in this case

amounts to
a d
ji t- kl + - [sgn(u - k)(A (u) - A (k))] <

< sgn(u - k)[S(x,t,u) - S(x,t,k)], for any real k.
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